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The onset of instability in the presence of an oscillatory axial flow between concentric rotating
cylinders to both axisymmetric and nonaxisymmetric disturbances is investigated on a linear basis for a
narrow-gap geometry. We consider two types of axial oscillation: one is due to an oscillatory pressure
gradient, and the other is due to an oscillation of the inner cylinder. For small Reynolds numbers, the
results are obtained for axisymmetric disturbances by expansion in terms of the amplitude of the oscilla-
tory flow. For finite Reynolds numbers (Re =< 100), the governing equations are solved for general dis-
turbances by a Galerkin expansion with time-dependent coefficients, and the stability boundaries of the
system are determined by use of Floquet theory. The time-modulated axial flow, in general, stabilizes
significantly axisymmetric disturbances except for some cases of counter-rotation with an oscillation of
the inner cylinder. No subharmonic critical solutions appear for Re < 100. For Re < 100, axisymmetric
disturbances are found to be more unstable than nonaxisymmetric ones when the outer cylinder is sta-
tionary, in contrast to the steady Poiseuille flow case for Re R 30. Nonaxisymmetric disturbances exhibit

phase locking and jumps in the response frequency.

PACS number(s): 47.20.—k

I. INTRODUCTION

We consider an incompressible viscous fluid which is
contained in the gap between two concentric cylinders
that rotate about a common axis at constant but different
angular velocities. Simultaneously, the inner cylinder os-
cillates axially or the fluid between the two cylinders is
forced to oscillate by an oscillatory pressure gradient im-
posed in the axial direction. Our aim is to investigate the
influence of the periodic motion upon the onset of ax-
isymmetric and nonaxisymmetric Taylor vortices. The
stability of a hydrodynamic system that has a time modu-
lation can be affected significantly by suitable tuning of
the basic nondimensional parameters. Many authors
have investigated the effects of time modulation of the
temperature at the boundaries in Rayleigh-Bénard con-
vection or of the cylinders’ rate of rotation for Taylor-
Couette flow; see, e.g., the recent papers by Meyer, Can-
nel, and Ahlers [1] and by Donnelly [2], respectively. For
Rayleigh-Bénard convection, the case when the fluid os-
cillates about a zero mean velocity and with constant wall
temperature has been investigated only recently by Kelly
and Hu [3,4]. In these papers, it is shown that nonplanar
oscillatory shear can have a significant stabilizing effect,
at least on a linear basis. This result caused us to initiate
the present study because the predicted effect might be
more easily observed in a laboratory experiment concern-
ing centrifugal instability rather than for the case of
thermal convection. For both situations, it is known that
a steady shear corresponding to the type considered for
the unsteady problem can have a stabilizing effect, and so
stabilization would appear to be possible, at least in the
quasisteady limit.

Time modulation of the angular velocities of the inner
cylinder for Taylor-Couette flow leads to destabilization
[5-8], in contrast to the stabilization that is predicted on
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a linear basis for thermal convection with time-
modulated boundary temperatures, at least for nondi-
mensional frequencies of order unity. However, theoreti-
cal results do not exist to our knowledge for the case of
axial flow oscillations. Considerable work has been done
for the case of a steady axial flow, and we now review this
work because the results are relevant to the present prob-
lem in the quasisteady limit.

For axisymmetric disturbances, Chandrasekhar [9],
Krueger and DiPrima [10], and DiPrima and Pridor [11]
obtained numerical results for the effect of a steady axial
Poiseuille flow with a fixed outer cylinder that indicate
that the critical Taylor number increases initially with
the Reynolds number. Nonaxisymmetric results were
published by Chung and Astill [12], Takeuchi and Jan-
kowski [13], Ng and Turner [14] and Babcock, Ahlers,
and Cannel [15]. These authors found that the axisym-
metric assumption is valid only for moderate values of
Reynolds number (e.g., Re <30 for the case 7=0.95
when the outer cylinder is stationary, where 7 is the ratio
of the radius of the inner cylinder to that of the outer
one). For somewhat larger Reynolds numbers, nonax-
isymmetric disturbances become critical, and the degree
of stabilization is not as great as predicted for the axisym-
metric case. Recently, Biihler and Polifke [16] and Luep-
tow, Docter, and Min [17] provided a stability diagram of
the flow regimes in the Taylor-number—Reynolds-
number plane.

In Sec. IT we present the linearized governing equa-
tions with a narrow-gap approximation. In Sec. III we
assume that the Reynolds number is very small, so that
we can expand in terms of the Reynolds number and find
explicitly the O(Re?) correction to the critical Taylor
number for axisymmetric disturbances. In Sec. IV we
consider the Reynolds number to be finite. The Galerkin
method is used to obtain a solution and leads to a set of
first-order ordinary differential equations with time-
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periodic coefficients. The stability boundaries of this sys-
tem are then determined by use of Floquet theory. Sec-
tion V contains axisymmetric results for u=1, 0, and
—1, and nonaxisymmetric results for u=0, where u is
the ratio of the angular velocity of the outer cylinder to
that of the inner one. Section VI gives a summary.

II. THE GOVERNING EQUATIONS

We consider the stability problem of a viscous in-
compressible fluid between two infinite concentric
cylinders that rotate about their common axis with con-
stant angular velocities in the azimuthal (6) direction
when we force the fluid also to oscillate in the axial (z*)
direction. We define the radii (R;,R,) and the angular
velocities (£,,{2,) to be those of the inner and outer
cylinders, respectively. In order to simplify this problem,
we make the narrow-gap approximation, so that the gap
width d =R, — R is small compared to their mean value
Ry=(R,+R,)/2. If the dimensional frequency of the
oscillatory flow W* is w*, the velocity of the basic state is

U*(t,8)=igV*(&)+i,W*(1,E) , (1a)
where iy and i, are unit vectors and
r*—Ro 1 1
=—0 —il=<¢g=<1, (1b)

and t=w*t*.
For the narrow-gap approximation, the steady velocity
V* is approximately equal to

Vr=Qr*[1—(1—p)X¢+h]+0(1—), (2a)
where
D2 and p=20 o @2b)
To, TR,

There are two types of axial flows that we wish to con-
sider. First, for pulsating Poiseuille flow due to a pres-
sure gradient oscillation, W*(¢,¢£) is given by the solution
of

Lk rw*

=—8W, t+ , (3a)
0COS. aé_ a

W*(t,—L)=Ww*(,1)=0, (3b)

where B2=w*d? /2v, is a nondimensional frequency and
Wo=(Ap*),d?/pyvoL is a characteristic velocity ap-
propriate for the quasisteady limit (82—0). Here Ap*
denotes a pressure difference, p; is the density of fluid, v,
is the kinematic viscosity, and L is a characteristic length
in the z* direction. Let

ag?

232—+zk ReW +inT, {1+a(f+1)} — K3§2 }
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W(t,6) =P8 = 1 e+ 18, 0e ™, (o)
0

where a tilde denotes the complex conjugate; then

i | eu+nBanto_ ,—a+npus2+p
$p(8)= —EEE (I+DB_,—(1+DB
i | eriBu2—0_  —+ip12—0) ]
28 | e+0B_ , —(1+18
+-L 3d)
232

Second, for flow due to an oscillation of the inner
cylinder in the axial direction, W*(¢,&) is given by the
solution of

2 OW* W
2B “ar 2 (4a)
W*(t,—1)=Wycost and W*(t,1)=0, (4b)

where W, is the amplitude of the inner cylinder’s veloci-
ty. Let

W)= 18 —1g e+ 1,07, o)
0

then

e (1HDBU1/2=0) _ , —(1+0)B(1/2—¢)
¢.(8)= - - . (4d)

e(l+t)B_e—(1+1)B

We now perturb this basic state by a small disturbance
which is assumed to vary periodically in the z* direction
and in the 6* direction, so that the disturbance is ex-
pressed as

us
up |(¢*,r*,0%,z*)
u’
u*
= [v* (%, r )% T e (5)
w#

where k* is the wave number, n* is the azimuthal wave
number, and c.c. denotes complex conjugate. We define
the following nondimensional quantities: z=2z*/d,
k=k*d, n=n*, 6=6% u=[u*/R,Q,(2Q,k%d?*/v,)],
and v=v*/R,Q,. After linearization of the Navier-
Stokes equations, introduction of Eq. (5), and elimination
of w* and the perturbation pressure, we have the follow-
ing characteristic value problem (see Krueger, Gross, and
DiPrima [18]):

2 2
il u—theaW
ag?

k2
a§2

u=—[1+al+L,  (6a)

2BZ—+tk ReW+inT,{1+a(f+ )} l——-—kz] =k2Tu , (6b)
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with the boundary conditions

u~2—§—v—o at f=+1 (6¢)
where the Reynolds number Re= Wd /vy, a=—(1—pn),
the Taylor number T=—4Q,4d*/v3, A=—Q (1
—p/n)/(1—=m)] and T,=([(1—))T /4(n*—p)D'"%
We retain the curvature effect only in T'and T,,.

III. THE ANALYSIS
FOR SMALL REYNOLDS NUMBERS

In order to determine the effect of the oscillatory flow
upon T, for small Re, an expansion in powers of Re is
used. For the axisymmetric case (n =0), the expansion
goes as

u(t,f)=uy(&)+Reu,(t,5)+Reu,(t,E)+ -+, (7a)
v(t,E)=v(&)+Rev,(t,&)+Rev,(t,E)+ - -, (7b)
T=T,=T,,+ReT,+Re’T,+ -+ . (7c)

Thus, as Re—0, T, is equal to the critical Taylor number
for the case without an axial flow, namely, T,.,. We wish
to see how this critical value is affected by an imposed ax-
ial oscillation. It is argued that T, cannot depend on the
sign of Re because changing the sign of Re merely
changes the phase of the oscillation by 7, which should
have no influence on the stability. It follows that all the
odd coefficients in the Taylor number expansion,
T,,T;, ... are zero. The expansions (7a)—(7c) are substi-
tuted into Egs. (6a) and (6b), and terms corresponding to
the same power of Re are grouped together.

As Re—0, we have the equations governing the classi-
cal Taylor problem, whereas the equations at O (Re) in-
volve nonhomogeneous terms that vary periodically with
time. After separating out the time dependence, the re-
sulting nonhomogeneous ordinary differential equations
(ODE’s) are solved by a shooting method appropriate for
a two-point boundary value problem. The normalization
used for the lowest order eigenfunctions was
(d%uy/dE?)=1at &= —1. At O(Re?), a mean nonhomo-
geneous term is produced via the Reynolds stress in addi-
tion to unsteady terms involving the harmonic of the
forcing.

Due to the fact that the homogeneous part of the equa-
tion involving the steady nonhomogeneous term is the
same as that arising at lowest order and so has a solution,
a solution to the nonhomogeneous problem exists only if
the Fredholm alternative is utilized. Its application in-
volves use of the adjoint solution of the lowest order
problem, which has been discussed by Roberts [19] and
Chandrasekhar [20], and leads to a solvability condition
involving T,. The details of the analysis are not given

M
2BP——=3 —(m*nm*+k?5,, 4,
m=1

~inT, 2 RIS

172

+ v, vdg‘}A +kT2[fl

H.-C. HU AND R. E. KELLY 51

here because they are rather similar to those presented by
Kelly and Hu [3] for the case of shear modulated
Rayleigh-Bénard convection. Values for T, will be given
in Sec. V for axisymmetric disturbances. The main
difference for the nonaxisymmetric case is that the lowest
order solution is time dependent, which leads to a
modification of the analysis described above.

IV. THE ANALYSIS
FOR FINITE REYNOLDS NUMBERS

A. The numerical procedure — Galerkin method

Having shown how to solve the stability problem given
by the axisymmetric version of Egs. (6a) and (6b) for
small values of the Reynolds number, we now discuss
how to determine numerically the stability for finite
values of the Reynolds number and for the nonaxisym-
metric problem. Let the perturbation variables v and u
be

M
v(t,6)= 2 A, (v, (), (8a)
u(t,f)= 2 B, (t)u, (), (8b)
where A4, () and B,, (1) are complex variables. The basis

functions v,, are
v (E)=V2sin[mm(E+ )], (9a)

and u,, is beam function [22], namely

sinh

A, E+ "’;“l sin xm§+f’—2—’1
Um(6)= snh[L(A, +imm)]  sm[i(h, tmm] @ OO

where A,, is the positive roots of the equation

tanh({A, )=(—1)"tan({A,) . (10

Both functions constitute complete orthonormal sets and
are solutions of
D} +m?m, =0, v,=0 at{=+1,

m

(11a)

Dy —Apu,=0, u,=Du,=0 atf{=+1, (llb)

where D =d /d¢.

The series (8a) and (8b) is substituted into the linear
perturbation equations (6a) and (6b), (6a) is multiplied by
v, and (6b) by u,, and both equations are then integrated
over range (—1,1) to obtain a set of 2M complex equa-
tions:

—ikRe S [f”z W vdg]
'—1

/2

u,,,u,,dg]Bm (12a)
/2



dB,,
dt

M 1/2
23 [ D? ) ]
B3 |[ ) uaDumds =k,
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M 1/ M
> [f © (+alg+H)v,u,de |4, + 3 [(7&‘,‘,,+k4)8m,,—2k2flfizu,,Dzumdg B,
m=1 - m=1 -

M

m=1

1 2
—ikRe 3 [f_:iz{Wu,,(Dz—kz)um—-%umun}dg

—] - 122 1 2__ 12
nT, 3, | [ 0+ ate+-Dlu, D>k, Vg |8,

where J,,, is the Kronecker delta. Define
- M 1/2
Zm=3 | [ uaDu,di—k%,, |,
m=1

n=12,...,M . (13)

For computational purposes it is convenient to rear-
range (12a) and (12b). First, we multiply (12b) by the in-
verse of the matrix made up of the elements (13). Now
introduce the notation

Yi=A,, Y,=A4,,...,Yy,=A4,, (14a)

Yy+1=B1, Yyi2=By, ..., Yo =B, . (14b)

Equations (12a) and (12b) can then be written in the form

ay; .
W_Gll(t)yj’ L,]=

where the matrix G;;(¢) is composed of the coefficients in

(12a) and (12b) and is periodic in ¢ with period 27.

L2,,...,2M , (15)

B. The application of Floquet theory

Our problem is now reduced to analyzing the stability
of a set of complex first-order periodic ordinary
differential equations. This will be accomplished using
classical Floquet theory [23] and numerical integration.
Let X be a 2M X2M fundamental matrix for Eq. (15).
We then have

49X _Gx, X(0)=I, (16)
dt

where I is the 2M X2M identity matrix. There exists a
constant nonsingular matrix R such that

X(t +2m)=X(1)R . (17)
Moreover, let
R=¢2"C (18)

where C is a constant matrix. The matrix X may be
represented as

X(t)=P(t)e’C, X(0)=P(0)=1I, (19)

where P(¢) is a 27r-periodic matrix. We integrate Eq. (16)
over one period to find X(27) and obtain

B,

(12b)
[
X(27)=P(27)e?™C=P(0)e? =1 . (20)
Hence
y;=e", j=12,...,2M , @1

where v is the characteristic multiplier of X(27), and o
the characteristic exponent (or Floquet exponent) of C.
The imaginary parts of the characteristic exponents
7(qj) are not determined uniquely. We can add =/,
1=0,1,2, ... to them. The values of the real part of the
characteristic exponent 72(o ;) determine the stability of
the system. Order the real part of the characteristic ex-
ponents so that #2(o ;) has the greatest value; the system
is then stable if (o ,) <0, while (o [)=0 defines a sta-
bility boundary and corresponds to one periodic solution.
At the stability boundary, if the principal value of the
imaginary part of o, J(o,), is zero, then y;=1 and the
disturbance is synchronous with the imposed oscillation,
whereas if J(o)=x=1, then y;=—1 and so the distur-
bance has a frequency equal to half that of the imposed
oscillation, corresponding to a subharmonic response of
order 1.

Our numerical technique consists of a forward integra-
tion scheme and an eigenvalue finder. Usually the
Runge-Kutta integration method is employed to obtain
X(2m). However, the system becomes stiff if the Rey-
nolds number Re is very large and the frequency S is very
small, or if the cylinders counter-rotate (i <0). We then
need to use Gear’s backward differentiation formulas
(BDF’s) [21] to complete the integration. All the numeri-
cal work is done in double precision, and M =7 is
sufficient for the purpose of numerical convergence be-
cause the difference in the results between M =7 and 9
was found to be much less than 1% for high or low fre-
quency 3 and different u’s.

V. RESULTS AND DISCUSSION

A. Axisymmetric disturbances

We have considered the stability of Taylor vortex flow
with different ratios of angular velocities u=1, 0, and
—1. Although axisymmetric instabilities are less likely
for u=x=1 than for £ =0 based on steady flow results (cf.
Busse [24] and Krueger and DiPrima [10]), we include
these results in order to provide some comparison to the
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1=0 case. In order to test our results for the limiting
case B—0, we compare our quasi-steady-state results for
an oscillating pressure gradient with the axisymmetric
steady flow results of Krueger and DiPrima [10] and
DiPrima and Pridor [11]. However, we note that our
Reynolds number definition is different from that of
Krueger and DiPrima. Krueger and DiPrima used the
cross-sectional average of the axial flow as a reference,
whereas we use the maximum velocity. As a result,
Krueger and DiPrima’s Reynolds number is % of our
Reynolds number Re.

Our axisymmetric results for ©=0 will be limited ini-
tially to values of Re <30 because the assumption of ax-
isymmetric flow would seem to be dubious for larger
values based on the steady flow results [13]. For these
values of Re as well as larger values that we have tested,
only synchronous solutions have been obtained for ax-
isymmetric disturbances. The first case that we consider
has Re=30 and corresponds to an oscillating pressure
gradient. Results are presented in Fig. 1 for u=0 and
—1; the results for u=1 for axisymmetric flow nearly
coincide with those for u=0. Maximum stabilization
occurs as 3—0 and the amount of stabilization decreases
continuously as S increases. For high frequencies, 3> 6,
there is almost no stabilization, due to the fact that the
oscillatory shear layer is very thin compared to the gap
width between the cylinders. But at low frequency 8<1,
shear exists throughout the gap. In this case, the stabiliz-
ing effect in the quasisteady state is almost the same as
one half that corresponding to steady flow with the factor
of 1, due to the fact that the stabilizing (or destabilizing)
mechanism in our case involves the mean-squared value
of the oscillatory shear. The increase of the critical Tay-
lor number in the quasisteady state is in good agreement
with one half that of Krueger and DiPrima [10] and
DiPrima and Pridor [11] for p=0 and 1. For u=—1,
however, Krueger and DiPrima’s results are inaccurate
because they only used three expansion terms in their cal-

0.200

FIG. 1. The ratio of the increase in the amount of stabiliza-
tion due to an oscillatory pressure gradient to the critical Taylor
number without axial shear as a function of the nondimensional
frequency B:Re=30; p=0, and 7T,,=3390; u=1 and
T.,=1707.8; and pu=—1 and T,,=18667;, @: for steady
Poiseuille flow at Re=30 [10,11].
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culation. We recalculated the case for Re=30 and found
T,=22429 and T _,=18667. We see that (T, —T,,)/
T, , in the quasisteady limit is almost the same as one half
that of the steady solution. However, the quasisteady re-
sult needs to be used with caution, due to the fact that
special analysis is needed at those instants when the shear
is zero. The situation is similar to that investigated by
Barenghi and Jones [5] for the case of inner cylinder
modulation of tangential velocity for Taylor-Couette
flow; see also Hall [25] for a discussion of the effects of
nonplanar flow oscillations on the onset of thermal con-
vection in this limit.

The critical Taylor number and wave number for a
steady axial flow induced by motion of the inner cylinder
are shown in Fig. 2. The critical Taylor numbers in-
crease monotonically with the Reynolds numbers, except

for p=—1 for which slight destabilization first occurs.
The maximum destabilization occurs at Re=35 for
u=—1, and stabilization occurs for Re ® 55. The critical

wave numbers decrease monotonically with the Reynolds
numbers for all three rotation ratios.

Returning now to the oscillatory flow case, let us com-
pare some results of the small Reynolds number analysis
with those from the finite Reynolds number analysis for
pu=1,0, and —1. Figure 3 and 4 show the results for the
case of a pressure gradient oscillation and Figs. 5 and 6
show the results for the case of an inner cylinder axial os-
cillation. In the finite Reynolds number analysis,
(Tc—Tcyo)/RezTC’o is analogous to the term T,/T,, in
the small Reynolds number analysis. We first let u=1 so
T,,=1707.8 in Fig. 3. The maximum stabilization
occurs in the quasisteady limit regardless of whether the
Reynolds number is small or large. The amount of the
stabilizing effect decreases continuously as 3 increases.
This figure also shows that the results for T, /T, are al-
most the same as those for (T, —T,,)/Re’T,, as deter-
mined by the finite Reynolds number analysis of Sec. IV,
at least for Reynolds numbers up to 30. In order to ex-

T T T T T T T T T T
0O 10 20 30 40 50 60 70 B0 90 100 110
Re

FIG. 2. Solid line: the ratio of the increase in the amount of
stabilization due to a steady axial flow induced by the inner
cylinder to the critical Taylor number without axial shear as a
function of the Reynolds number. Dotted line: the critical
wave number as a function of the Reynolds number: O for u=1
and T,,=1707.8; A for u=0and T,,=3390; O for u=—1and
T, =18 667.
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FIG. 3. The amount of stabilization for different Reynolds
numbers due to an oscillatory pressure gradient as a function of
the nondimensional frequency B: p=1;0: T,/T,., for Re<<1;
X: (T,—T.o)/Re’T,, for Re=1; A: (T.—T,,)/Re*T,, for
Re=30; @: the steady Poiseuille flow result from Datta [26].

plain this phenomena, we examined the steady flow re-
sults of Datta [26], who derived a formula for the critical
Taylor number as k. =3.12 and Re—0 under the condi-
tions of steady axial Poiseuille flow and corotating
cylinders (u=1). We modified his formula to suit our
problem and obtained the following expression:

1.32

T, =1707.8+ ==

4

9 (22)

Re?

The value of (7,—1707.8)/Re?1707.8=0.00017176
confirms our calculation for the quasisteady state.
Datta’s formula can be used to predict the critical Taylor
number when Re is as large as 30, the error for Re=30
being about 5%. It is thus not surprising that our small
Reynolds number analysis is also accurate for Reynolds
number up to 30 in the quasisteady limit; the results

2.00
x 1074
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] l-z_xe =20
1.50+ ]
— ] ]
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FIG. 4. The amount of stabilization for different Reynolds
numbers due to an oscillatory pressure gradient as a function of
the nondimensional frequency B: u=0, —1; O: T,/T,, for
Re<<1; X: (T,—T,0)/Re*T,, for Re=1; A:
(T,—T.0)/Re’T,, for Re=130; @: the steady result at Re=30.

FIG. 5. The amount of stabilization for different Reynolds
numbers due to an oscillation of the inner cylinder as a function
of the nondimensional frequency B: pu=1; O0: T,/T.,) for
Re<<1;X: (T.—T,o/Re*T.,  for  Re=l; A:
(T,— Tc,o)/Resz,o for Re=30; @: the steady result at Re=30.

shown in Fig. 3 indicate that the agreement is not depen-
dent on the value of B. In Fig. 4, we let u=0, T, ,=3390
and u=—1, T, ,=18667. Both figures show properties
similar to those shown in Fig. 3.

Next we show some results for the case when the inner
cylinder undergoes an axial oscillation. In Fig. 5, we let
u=1and T,,=1707.8. We note that this figure shows a
different trend compared to Figs. 3 and 4 as 8 changes.
Although the amount of stabilization still decreases with
B for very large values of 3, the maximum amount of sta-
bilization no longer occurs as —0. The maximum in-
crease of the Taylor number occurs at approximately
B=2.2. The curves of the small and finite Reynolds
number analyses are again almost the same for Reynolds
numbers up to 30. The result of the quasisteady limit
again agrees with that for steady axial flow induced by

FIG. 6. The amount of stabilization for different Reynolds
numbers due to an oscillation of the inner cylinder as a function
of the nondimensional frequency 8: ©=0, —1; 0: T,/T,, for
Re<<1; X: (T.—T,0)/Re*T,, for Re=1; A: (T,—T.)/
Re?T, , for Re=30; solid line (T — T, ) /Re*T,; at k=3.999 for
Re=230; @: the steady result at Re=30 and 1.
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motion ot the inner cylinder for Re=30. In Fig. 6,
T,.,=3390 for u=0, whereas T,,=18667 for u=—1.
For u=0, we have the same conclusions as for Fig. 5.
For u=—1, we see that destabilization now occurs for
B <3 and that the maximum amount of destabilization
occurs in the quasisteady limit. From Fig. 2 we know
that an increase of the Reynolds number will lead to sta-
bilization eventually. However, we do not know whether
or not the maximum increase of critical Taylor number
will occur in the quasisteady limit or at some finite 3; this
needs further study. We indicate by a solid line the re-
sults at a fixed wave number, k=13.999, equal to the criti-
cal wave number without an axial shear flow. It appears
that the critical Taylor number is not affected too much
by change in the critical wave number for different im-
posed frequencies .

Next we will show some critical values of Taylor num-
bers and wave numbers for different Reynolds numbers
with £4=0. We examine the cases of =1 and 2.5. We
see in Fig. 7 that the critical Taylor number increases as
the Reynolds number increases for both cases. In Fig. 8,
we see that the critical wave number increases slightly as
the Reynolds number increases for the case of a pressure
gradient oscillation, but that the critical wave number de-
creases significantly as the Reynolds number increases for
the case of an oscillation of the inner cylinder. Figure 8
also shows that the critical wave numbers for both cases
are almost the same when Re $30. For the case of oscil-
latory Couette flow, the characteristic velocity W, is
equal to (8*w*), where 8* is a characteristic displace-
ment of the wall. It follows that 6* /d =Re/23? so that
8*>>d for either large Re or small B. For B=2.2,
8* /d =0.103Re, so that the effect can be realized most
easily for thin layers, which, of course, are typical of lu-
brication problems.

It should again be emphasized that the prediction of an
increase of critical Taylor number is limited by the as-
sumption that the disturbances are axisymmetric. For
the case of a steady axial Poiseuille flow, axisymmetric
disturbances are more unstable up to Re=30 when p=0,
and so next we investigate if the same is true for unsteady
flow.
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FIG. 7. The critical Taylor number as a function of the Rey-
nolds number. u=0; O: B=1; and @ B=2.5 for the oscillation
of the inner cylinder. A: B=1 and A: B=2.5 for the oscilla-
tion of a pressure gradient.
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FIG. 8. The critical wave number as a function of the Rey-
nolds number. u=0; O: B=1;and @: B8=2.5 for the oscillation
of the inner cylinder. A: B=1 and A: B=2.5 for the oscilla-
tion of a pressure gradient.

B. Nonaxisymmetric disturbances

In this section we discuss briefly some results for
nonaxisymmetric disturbances (n+0) for the case of os-
cillating Poiseuille flow. We choose 7=0.95 for the fol-
lowing calculations in order to satisfy the narrow-gap as-
sumption. Besides the critical Taylor number and corre-
sponding wave number, we wish to describe the time-
dependent behavior of the disturbances, which, as we will
show, is not necessarily synchronous with the forcing for
nonaxisymmetric disturbances. For this purpose, we in-
troduce a quantity called the characteristic response fre-
quency of the disturbance that depends linearly upon
J(o()+1, where [ is, as noted after Eq. (21), an arbitrary
integer as far as the Floquet exponent is concerned. We
will fix / by comparison with the unmodulated case; say
then that J(&) is the resulting value of the above quanti-
ty. We now define the characteristic response frequency
of the disturbance as f,=282J(&,). By use of this fre-
quency, we are essentially using the diffusive time scale
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FIG. 9. The imaginary part of the Floquet exponent as a
function of the Reynolds number for different azimuthal wave
numbers: u=0, =2, and 7=0.95 for n =0, 1, and 2.
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(d?/v,) instead of (1/w*), which is desirable when mak-
ing the comparison to the unmodulated case. With this
diffusive time scale, the forcing frequency becomes
fr =2p

The numerical results for J(o ) are shown in Fig. 9.
For the axisymmetric case, J(o;)=0, because a synchro-
nous response occurs, and so we take / =0. For n=1
and 2, however, J(o )70 and is dependent upon both n
and Re. For J(0 ;)70 or *1, the disturbance (for a neu-
trally stable case) is quasiperiodic, with f + and f, being
the two frequencies. We first want to relate our results
for the case Re—0 to the results of Krueger, Gross, and
DiPrima [18] for nonaxisymmetric Taylor vortices
without axial flow. If we denote the frequency of the
most unstable disturbance found by Krueger, Gross, and

DiPrima as f,,, then from [18] f,,=—4.8534 and
fo,,=—9.7661 for a value of =0.952381. If we take
I =—1, then, as Re—0, our results, from Fig. 9 and us-

ing J(@)=J(o)—1, are [f,;=—5.0246 and
Sfr2=—10.1232 for B=2. The agreement is quite reason-
able, and indicates that we have chosen the correct value
of I.

For Re slightly greater than 60 in Fig. 9, a jump in
J(o,) from —1 to J occurs corresponding to a jump in
J(&,) from —32 to —1. The characteristic response fre-
quency seems to undergo a sudden adjustment once it
goes too far below the unmodulated natural frequency to
a frequency somewhat above f, , (i.e., from f, ,=—12 to
fr2=—4). With further increase in Re, f,, again begins
to become more negative, becomes equal to f, at
Re=110, then declines further until presumably a second
jump occurs at a still higher value of Re. The result for
fr,1 shows a steady decrease, but presumably a jump also
occurs in it for a still higher value of Re than shown.

The jumps shown in Fig. 9 for a fixed value of f as Re
increases also occurs for a fixed value of Re as f; in-
creases, as shown in Fig. 10 for n =2, u=0, and Re=0.1.
For large forcing frequencies (f;%20), f,, is equal to
fo,2>» namely —10.1232. For such high values of 3, the
effect of modulation can be expected to be slight, and one
should expect f,,=f,,. The interesting aspect is that

i/ /

0 5 10 15 20 25 30 35

I
FIG. 10. The characteristic response frequency of the distur-
bance as a function of the forcing frequency: f,=2B29(8,),
1=0, and f;=2p" for u=0, 7=0.95, Re=0.1, and n =2.
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the change to f, , occurs suddenly at a certain value of 3,
rather than gradually over a range of 8. The jump from
fr2=—10.12 to 10.12 as f, decreases below 2f ,, so
that the response is a subharmonic of order 1 with regard
to the forcing. The change in sign of f, , means that the
helical nature of the disturbance changes direction. For
further decrease in f, the disturbance becomes synchro-
nous with the forcing when f,=f,, and then becomes
negative again until another jump occurs to a positive
value of f,,. Notice that the response is always synchro-
nous when f,=f,,/m, m=1,2,3.... By connecting
the values of f,, at which the jumps occur for f,,>0,
and also for f, , <0, an envelope of possible values for f, ,
is defined. Within this envelope, quasiperiodic behavior
predominates. As f,—0, the extent of the envelope be-
comes small, suggesting synchronous motion in the
quasisteady limit. As mentioned previously, however, a
separate analysis is required in this limit. The jumps
occur when f,=2f,,/(2N+1),N=0,1,2,3,.... The
response frequency always jumps to a value correspond-
ing to a subharmonic of order J with respect to the forc-
ing. In Fig. 11, the slope of the response frequency (f,)
with respect to the forcing frequency (f,) is constant,
Af,/Afy=N, N=0,1,2,.... There are different stages
corresponding to different forcing frequency regions.
When the forcing frequency is small, the slope is large
but the band becomes narrow. For large forcing frequen-
cies (f;=20), the slope is zero. This means that the
response frequency is equal to the most-amplified fre-
quency f,, for such a high forcing frequency. The
reason is the same as we have mentioned in regard to Fig.
10.

Ho and Huang [27] observed somewhat similar jumps
in the response frequency in experiments concerning a
temporally forced mixing layer when the forcing frequen-
cy was too far away from the most probable natural fre-
quency. In that case, however, the jump occurred so that
the most probable natural frequency was obtained after
the jump. In the interval between jumps, the response
frequency was constant and equal to a subharmonic of or-
der N with regard to the forcing frequency. In these
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FIG. 11. The slope of the response frequency with respect to
the forcing frequency corresponding to different forcing regimes
for u=0, n=0.95, Re=0.1, and n =2.
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FIG. 12. The critical Taylor number as a function of the
Reynolds number for different azimuthal wave numbers: p=0,
B=2,and n=0.95 for n =0, 1 and 2.

respects, their results differ from ours and indicate that
various scenarios for frequency adjustment are possible in
modulated systems which are capable of giving rise
(without modulation) to instabilities that have well-
defined frequencies.

Although the above results have intrinsic interest, Fig.
12 indicates that special methods might have to be em-
ployed to observe them, due to the fact that axisymmetric
disturbances are found to be the most unstable form of
disturbances for f=2 and p=0. This result has been
found to hold up to the highest value of Re used, namely
Re=100. This is well above the value of Re at which
nonaxisymmetric disturbances become unstable for a
steady axial Poiseuille flow. The conclusion is that the
axial oscillation stabilizes nonaxisymmetric disturbances
even more than axisymmetric disturbances, which is an
interesting result on its own. However, the differences
between the stability curves are not great, and so the
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FIG. 13. The critical wave number as a function of the Rey-
nolds number for different azimuthal wave numbers: u=0,
B=2,and n=0.95 for n =0, 1, and 2.
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effects described above for nonaxisymmetric disturbances
might possibly be observed by using some means of in-
ducing such disturbances (e.g., by altering the geometry
of the inner cylinder). The critical wave numbers for the
nonaxisymmetric disturbances are shown in Fig. 13 and
exhibit a gradual increase with Re.

VI. SUMMARY AND CONCLUSIONS

Using linear theory, we have investigated the onset of
Taylor-vortex flow when an axial motion due to a pres-
sure gradient oscillation is imposed between the two
cylinders or when the inner cylinder oscillates in the axial
direction. Under the axisymmetric and the narrow-gap
assumptions, we have derived a formula for the increase
in the critical Taylor number T, from a parameter expan-
sion and a solvability condition when Re is assumed to be
small. We used a Galerkin method with orthogonal func-
tions for finite values of Re. For both methods the ratios
of (T,—T,,)/Re*T,, and T,/T,, agree very well for
u=0, n=0, and Re up to 30. The results in the
quasisteady state limit of a pressure gradient oscillation
agree with those of a steady axial Poiseuille flow [10,11],
and the results for an oscillation of the inner cylinder
have the same property. We make the following con-
clusions.

(1) When 4 =0 and n =0, the critical Taylor numbers
can be predicted by use of a small amplitude analysis
even for Re up to 30.

(2) For axisymmetric disturbances, we can always ob-
tain larger critical Taylor numbers when we impose a
pressure gradient oscillation between the two cylinders
than when we do not. The same conclusion holds for an
oscillation of the inner cylinder as long as £ >0. But
when p <0, we find destabilization when the inner
cylinder oscillates at a low value of frequency ().

(3) The maximum stabilizing effect occurs in the
quasisteady limit on the basis of this analysis when we
impose a pressure gradient oscillation. But when the
inner cylinder oscillates, the maximum stabilization
occurs at some nonzero value of .

(4) For =0 and axisymmetric disturbances, the criti-
cal Taylor number increases monotonically for both oscil-
latory motions up to Re=2100, the largest value con-
sidered. The critical wave number decreases as Re ™! for
the oscillation of the inner cylinder, whereas it increases
slightly when a pressure gradient oscillation occurs.

(5) From the nonaxisymmetric results for p=0, we
conclude that the critical Taylor number occurs for ax-
isymmetric modes when we impose an oscillatory axial
Poiseuille flow and that therefore the oscillation seems to
stabilize nonaxisymmetric disturbances.

(6) The response of nonaxisymmetric modes is in gen-
eral quasiperiodic, and involves one frequency that exhib-
its jumps as the forcing frequency and Reynolds number
are changed.

The stabilization predicted in this paper cannot contin-
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ue indefinitely as Re increases. Higher centrifugal modes
might begin to appear, or a hydrodynamic (shear) insta-
bility will set in. The question of the maximum possible
amount of stabilization will hopefully also be discussed in
a later paper, as will the occurrence of nonaxisymmetric
instabilities for u+=0.

ACKNOWLEDGMENTS

This material is based upon work supported by the
NSF under Grant No. CTS-9123553. The authors wish
to acknowledge the helpful comments of Professor P.
Hall.

[1] C. W. Meyer, D. S. Cannel, and G. Ahlers, Phys. Rev. A
45, 8583 (1992).
[2]J. Donnelly, in Nonlinear Evolution of Spatio-Temporal
Structures in Dissipative Continuous Systems, edited by F.
H. Busse and L. Kramer (Plenum, New York, 1990), p. 31.
[3] R. E. Kelly and H.-C. Hu, J. Fluid Mech. 249, 373 (1993).
[4] R. E. Kelly and H.-C. Hu, Heat Transfer 7, 79 (1994).
[5] C. F. Barenghi and C. A. Jones, J. Fluid Mech. 208, 127
(1989).
[6] H. Kuhlmann, D. Roth, and M. Liicke, Phys. Rev. A 39,
745 (1989).
[7] P. Hall, J. Fluid Mech. 67, 29 (1975).
[8] P. J. Riley and R. L. Laurence, J. Fluid Mech. 75, 625
(1976).
[9] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Sta-
bility (Dover, New York, 1981).
[10] E. R. Krueger and R. C. DiPrima, J. Fluid Mech. 19, 528
(1964).
[11]R. C. DiPrima and A. Pridor, Proc. R. Soc. London Ser.
A 366, 555 (1979).
[12] K. C. Chung and K. N. Astill, J. Fluid Mech. 81, 641
(1977).
[13] D. I. Takeuchi and D. F. Jankowski, J. Fluid Mech. 102,
101 (1981).

[14] B. S. Ng and E. R. Turner, Proc. R. Soc. London Ser. A
382, 83 (1982).

[15] K. L. Babcock, G. Ahlers, and D. S. Cannell, Phys. Rev.
Lett. 67, 3388 (1991).

[16] K. Biihler and N. Polifke, in Nonlinear Evolution of
Spatio-Temporal Structures in Dissipative Continuous Sys-
tems (Ref. [2]), p. 21.

[17] R. M. Lueptow, A. Docter, and K. Min, Phys. Fluids A 4,
2446 (1992).

[18] E. R. Krueger, A. Gross, and R. C. DiPrima, J. Fluid
Mech. 24, 521 (1966).

[19] P. H. Roberts, J. Math. Anal. Appl. 1, 195 (1960).

[20] S. Chandrasekhar, J. Math. Mech. 10, 683 (1961).

[21] C. W. Gear, Numerical Initial Value Problems in Ordinary
Differential Equations (Prentice-Hall, New York, 1971).

[22] D. L. Harris and W. H. Reid, Astrophys. J. Suppl. Ser. 3,
429 (1958).

[23] E. A. Coddington and N. Levinson, Theory of Ordinary
Differential Equations McGraw-Hill, New York, 1955).

[24] F. H. Busse, Z. Angew. Math. Mech. 50, 173 (1970).

[25] P. Hall, J. Fluid Mech. (to be published).

[26] S. K. Datta, J. Fluid Mech. 21, 635 (1965).

[27] C.-M. Ho and L.-S. Huang, J. Fluid Mech. 119, 443 (1982).



